
VOL. E100-D NO. 10
OCTOBER 2017

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



2648
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

LETTER

Efficient Regular Path Query Evaluation by Splitting with
Unit-Subquery Cost Matrix

Van-Quyet NGUYEN†a), Nonmember and Kyungbaek KIM†b), Member

SUMMARY A widely-used query on a graph is a regular path query
(RPQ) whose answer is a set of tuples of nodes connected by paths corre-
sponding to a given regular expression. Traditionally, evaluating an RPQ
on a large graph takes substantial memory spaces and long response time.
Recently, several studies have focused on improving response time for eval-
uating an RPQ by splitting an original RPQ into smaller subqueries, evalu-
ating them in parallel and combining partial answers. In these works, how
to choose split labels in an RPQ is one of key points of the performance
of RPQ evaluation, and rare labels of a graph can be used as split labels.
However there is still a room for improvement, because a rare label cannot
guarantee the minimum evaluation cost all the time. In this paper, we pro-
pose a novel approach of selecting split labels by estimating evaluation cost
of each split subquery with a unit-subquery cost matrix (USCM), which can
be obtained from a graph in prior to evaluate an RPQ. USCM presents the
evaluation cost of a unit-subquery which is the smallest possible subquery,
and we can estimate the evaluation cost of an RPQ by decomposing into
a set of unit-subqueries. Experimental results show that our proposed ap-
proach outperforms rare label based approaches.
key words: regular path queries, large graphs, graph querying

1. Introduction

A regular path query (RPQ) is first introduced as part of a
query language for graph databases, which are represented
as graphs in which nodes are objects and edge labels specify
relationships between them [1]. The answer of an RPQ is
a set of tuples of nodes that are connected with edge labels
in some ways by the paths specified by a regular language.
There are a lot of applications using RPQs such as friends
recommendations in social networks [2] and detecting sig-
nal pathways in protein interaction networks [3]. However,
evaluating an RPQ on such large graphs takes substantial
memory spaces and long response time. Therefore, in this
paper, we focus on finding an efficient regular path queries
evaluation on large graphs.

The most common approach for evaluating an RPQ is
based on automata. A graph needs to be translated into a
NFA (Nondeterministic Finite Automaton), and a regular
expression of an RPQ can be converted into an automaton
before using it to match paths [4]. However, most modern
graph databases contain a huge number of nodes and edges,
which leads that the automata based method takes substan-

Manuscript received March 12, 2017.
Manuscript revised May 24, 2017.
Manuscript publicized July 12, 2017.
†The authors are with the Department of Electronics and

Computer Engineering, Chonnam National University, Gwangju,
Korea.

a) E-mail: quyetict@utehy.edu.vn
b) E-mail: kyungbaekkim@jnu.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2017EDL8060

tial memory spaces and long response time.
Recently, an approach for evaluating an RPQ efficiently

on large graphs has been studied [5]. In this approach, an
RPQ is decomposed into multiple subqueries by using rare
labels which are rarely appeared in a graph, and each sub-
query is evaluated independently in parallel fashion and the
independent partial results are combined into the final an-
swer of an RPQ. Because each subquery can be evaluated
in parallel, the evaluation cost, especially the response time,
can be reduced.

The rare label based approach adopts the idea that a
subquery starting from a rare label takes less response time.
However, some subqueries split by rare labels cannot reduce
response time if a node with many neighbors is connected to
a rare label edge. It is because that the searching space of
a subquery split by a rare label is expanded by these many
neighbors of the nodes connected to the rare label.

In this paper, we propose a novel approach of select-
ing split labels for an RPQ by estimating the searching
cost of each split subquery with a unit-subquery cost ma-
trix (USCM). By choosing split labels which minimize the
estimated graph searching cost of split subqueries, the pro-
posed approach can reduce more response time for evaluat-
ing a RPQ on large graphs than rare label based approaches.

2. Rationale of the Proposed Approach

An RPQ is evaluated on an edge-labeled directed graph G =
(V , E, Σ), where V is a finite set of nodes, Σ is a finite set of
labels, and E ⊆ V × Σ × V is a finite set of edges. An edge
(v,a,u) denotes a directed edge from node v to u labeled with
a ∈ Σ. A path ρ between nodes v0 and vk in G is a sequence
v0a0v1a1v2 . . . vk−1ak−1vk such that each (vi, ai, vi+1), for 0 ≤
i < k is an edge. The sequence of labels of a path ρ, denoted
L(ρ), is the string a0a1 . . . ak−1 ∈ Σ∗. We also define the
empty path as (v, ε, v) for each v ∈ V; the label of such a path
is the empty string ε. An RPQ with a regular expression R

is a query of the form Q(R) = v
L(R)−→ u, where L(R) ∈ Σ∗ is a

regular language. So, a path ρ satisfies Q(R) on the graph G
iff L(ρ) ∈ L(R), then ρ is the answer of Q(R).

Let us assume that we have an edge-labeled directed
graph G and an RPQ with a regular expression R = abc(d|c)e
as shown in Fig. 1. We can define the evaluation cost of an
RPQ as the number of traversed edges for searching paths
corresponding to the RPQ.

For an automata based approach, there are three edges

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



LETTER
2649

Fig. 1 a) An example of a directed edge-labeled graph; b) a regular path
query as an automaton

which have a label and these edges are used as the starting
edges of searching the paths. From these edges, we find
the nodes for next searching step such as node 3 and node 5.
Then, searching process continues from these nodes until no
path can be found in the search process. Here, the evaluation
cost of automata based approach is fifteen.

For a rare label based approach, because b is only
found in the edge (3,b,6), the rarest label b can be used to
split an RPQ Q(abc(d|c)e) into two subqueries, Q(ab) and
Q(bc(d|c)e). For the subquery Q(ab), there are three starting
edges and only one more edges is traversed for searching.
For the subquery Q(bc(d|c)e), there is one starting edge and
eleven more edges are traversed. If we assume that these two
subqueries are evaluated in parallel, the evaluation cost be-
comes twelve which is the maximum evaluation cost among
split subqueries.

In this case, if we use label c as a split label, we may
reduce the evaluation cost. By using c as a split label,
Q(abc(d|c)e) is split into Q(abc) and Q(c(d|c)e). For the
subquery Q(abc), there are three staring edges and six edges
are traversed. For the subquery Q(c(d|c)e), there are three
starting edges and seven edges are traversed. That is, the
evaluation cost can be reduced from twelve to ten if we use
the label c as a split label rather than b.

The key observation is that the evaluation cost depends
on not only the number of appearance of a label (i.e. rare la-
bel) but also the number of outgoing/incoming nodes related
to a label.

3. Evaluating RPQ with USCM Based Split

3.1 Unit-Subquery Cost Matrix (USCM)

Intuitively, an RPQ is composed of multiple small sub-
queries with a few operators such as concatenation, alterna-
tion, and Kleene star. Then, we can define a unit-subquery
as the smallest subquery which concatenated by two labels
from Σ; the start label and the end label. For example, in
the graph G of Fig. 1, a subquery Q(ab) is a unit-subquery,
where a is the start label and b is the end label. In practice,
any subquery can be split into multiple unit-subqueries ex-
cept the subquery with a Kleene star operator. For example,
the subquery Q((a|b)c) can be split into two unit-subqueries
Q(ac) and Q(bc); meanwhile, the subquery Q(ab∗c) can not
split into Q(ab) and Q(bc). Thus, we define a Kleene star
unit-subquery as the smallest subquery which concatenated

Table 1 An example of unit-subquery cost matrix

Label:Count a b c d e Total

a:3 0;1;0 1;1;1 0;1;0 0;1;0 0;1;0 1

b:1 1;5;1 0;5;0 2;9;3 1;6;1 1;7;2 5

c:3 0;4;0 0;4;0 1;5;1 1;8;2 2;4;2 4

d:3 0;5;0 0;5;0 1;6;1 1;7;1 3;5;3 5

e:4 0;2;0 0;2;0 0;2;0 1;4;1 1;2;1 2

by two labels from Σ; the start label and the end label along
with a Kleene star (i.e. Q(ab∗)). Now, the subquery Q(ab∗c)
can be split into a Kleene star unit-subquery Q(ab∗) and a
unit-subquery Q(bc).

The cost of a unit-subquery is defined as the number of
edges with the end label, which is connected to the edges
with the start label. For example, in the graph G of Fig. 1,
the cost of a subquery Q(ab) is one, because there is only
one edge (3, b, 6) labeled with b, which is connected to uni-
directional edges labeled with a. For a Kleene star unit-
subquery, the cost is defined as the total number of edges
which can be traversed during searching the end label with
a Kleene star (*) from every start label. For example, the
cost of Q(bc∗) in the graph G of Fig. 1 is nine.

With the definition of the cost of unit-subqueries, we
can generate a Unit-Subquery Cost Matrix (USCM) which
represents the cost of all possible unit-subqueries from Σ as
well as the cost of the Kleene star unit-subqueries. An ex-
ample of USCM is shown in Table 1. The size of USCM is n
by n+ 1 where n is the number of distinct labels in Σ. A cell
(i, j) of USCM, except the last column where j is n+ 1, rep-
resents three value separated by a semicolon: the first value
is the cost of a unit-subquery, Q(aia j), whose start label is
ai ∈ Σ and end label is a j; the second value is the cost of a
Kleene star unit-subquery, Q(aia∗j); and the third value is the
number of edges labeled with a j which can be found from
Q(aia∗j). In the last column, a cell (i, j) represents the cost of
a unit-subquery Q(ai.), that is, the summation of the costs of
unit-subqueries whose start label is ai. Additionally, USCM
contains the number of edges with a given label (Count) like
the first column of USCM.

3.2 Estimation of Evaluation Cost for an RPQ

3.2.1 A String RPQ with Concatenation

In our approach, the evaluation cost of an RPQ is estimated
by splitting the original RPQ into multiple unit-subqueries
and gathering the cost of each successive unit-subqueries.

Let us assume that there is an RPQ, Q(R), where
R = a0a1 . . . an as a string that is concatenated by
(n + 1) labels ai ∈ Σ. Then, Q(R) can be split into
Q(a0a1),Q(a1a2), . . . ,Q(an−1an), and the evaluation cost for
Q(R) is defined as summation of cost of each successive
unit-subquery like Eq. (1).

CQ(R) =

n−1∑
i=0

CQ(aiai+1) =

n−1∑
i=0

Ci (1)



2650
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

Algorithm 1 GetBestSetSubquery with the given k
Require: A regular expression R, a number of subqueries k, U as an

USCM of graph G
Ensure: A set of k subqueries R1,R2, . . . ,Rk

1: bestSetSubquery← ∅; /*list best subqueries with minimum cost*/
2: minGlobalCost← ∞;
3: setSubqueries []← GetAllSolutions(R, k);
4: for each setSubquery ∈ setSubQueries do
5: maxLocalCost← 0;
6: for each sb ∈ setSubquery do
7: subqueryCost← EstimateCost(sb,U);
8: if subqueryCost > maxLocalCost then
9: maxLocalCost← subqueryCost;

10: if maxLocalCost < minGlobalCost then
11: minGlobalCost← maxLocalCost;
12: bestSetSubquery← setSubQuery;

13: return bestSetSubquery;

For C0, the evaluation starts from the edge labeled with
a0 and tries to find the path to a1. Accordingly, C0 composed
of the cost of finding the next search nodes and the cost of
searching a1. That is, C0 = δ(a0) + ξ(a0), where δ(ai) is
the number of edges given label ai which is the Count value
for the first column of USCM and ξ(ai) is the cost of Q(ai.)
which is the value of the last column of USCM.

For Ci, where i > 0, we do not consider the searching
cost for finding edges with label ai, because this cost is al-
ready considered in the previous step Ci−1. So, for Ci, we
only consider the searching cost for finding edges with label
ai+1. However, this cost is affected by the number of search
nodes which are found in the previous step. To consider this
effect, we can calculate the probability of how many edges
labeled with ai related to the unit subquery Q(ai−1ai) are
found among the all the edges labeled with ai, and apply to
the searching cost to edges labeled with ai+1 from edges la-
beled with ai. That is, Ci, where i > 0, can be represented
like Eq. (2), where μ(ai−1, ai) is the cost of unit-subquery
Q(ai−1ai), which is the first value of each cell of USCM.

Ci =
μ(a0, a1)
δ(a1)

× · · · × μ(ai−1, ai)
δ(ai)

× ξ(ai) (2)

3.2.2 An RPQ with Alternation Operator

We assume that an RPQ, Q(R), is defined by a regu-
lar expressions R = a0a1 . . . ak−1(ak |ak+1)ak+2 . . . an, where
ai ∈ Σ. Herein, R has an alternation operator between
ak and ak+1. In this case, the original Q(R) can be split
into three subqueries Q(a0 . . . ak−1),Q(ak−1(ak |ak+1)ak+2),
and Q(ak+2 . . . an). For the subqueries Q(a0 . . . ak−1) and
Q(ak+2 . . . an), we can estimate their cost by using our
method in Sect. 3.2.1.

For evaluating Q(ak−1(ak |ak+1)ak+2), we need to con-
sider two different steps; Q(ak−1(ak |ak+1)) and Q((ak |
ak+1)ak+2). Firstly, Q(ak−1(ak |ak+1)) can be considered into
two subqueries Q(ak−1ak) and Q(ak−1ak+1). In here, eval-
uating the both of subqueries starts from edges labeled
with ak−1, and during one time evaluation we can tra-
verse the edges labeled with ak as well as ak+1. So,

the cost of Q(ak−1(ak |ak+1)) can be estimated by the cost
of either Q(ak−1ak) or Q(ak−1ak+1). On the other hands,
Q((ak |ak+1)ak+2) can be decomposed into Q(akak+2) and
Q(ak+1ak+2), and the evaluation process of these subqueries
are different to each other. So, CA, the estimated cost of
Q(ak−1(ak |ak+1)ak+2) can be estimated by the summation
of the costs of Q(ak−1ak), Q(akak+2), and Q(ak+1ak+2) like
Eq. (3).

CA = CQ(ak−1ak) +CQ(akak+2) +CQ(ak+1ak+2)

=
μ(a0, a1)
δ(a1)

× · · · × μ(ak−2, ak−1)
δ(ak−1)

×
(
ξ(ak−1)+

μ(ak−1, ak)
δ(ak)

ξ(ak)+
μ(ak−1, ak+1)
δ(ak+1)

ξ(ak+1)
)

(3)

3.2.3 An RPQ with Kleene Star Operator

Let us assume that there is an RPQ, Q(R), where R =
a0a1 . . . ak−1a∗kak+1 . . . an with a Kleene star operator. To
estimate the cost of Q(R), we can split this query into
three subqueries including Q(a0 . . . ak−1),Q(ak−1a∗kak+1),
and Q(ak+1 . . . an), then the evaluation cost for Q(R) is
defined as summation of cost of each subquery. We
can estimate the costs of the subqueries Q(a0 . . . ak−1) and
Q(ak+1 . . . an) by using the proposed method described in
Sect. 3.2.1. The subquery Q(ak−1a∗kak+1) can split into
Q(ak−1a∗k) (a Kleene star unit-subquery) and Q(akak+1)
as we described in Sect. 3.1. So, the estimated cost of
Q(ak−1a∗kak+1), CK , is defined as summation of the estimated
cost of Q(ak−1a∗k) and Q(akak+1), as shown in Eq. (4).

CK =
μ(a0, a1)
δ(a1)

× · · · × μ(ak−2, ak−1)
δ(ak−1)

×
(
ϕ(ak−1, a

∗
k) +
μ′(ak−1, ak)
δ(ak)

ξ(ak)
) (4)

where ϕ(ak−1, a∗k) is the cost of a Kleene star unit-subquery
Q(ak−1a∗k), which is the second value in the corresponding
cell of USCM; μ′(ak−1, ak) is the number of the edges la-
beled with ak found in all possible results of Q(ak−1a∗k),
which is the third value in the corresponding cell of USCM.

Note that our approach can also be used for other modi-
fiers (+ and ?). That is, the estimated cost of a unit-subquery
Q(ak−1ak+) equals to the estimated cost of Q(ak−1aka∗k),
while the estimated cost of Q(ak−1ak?) equals to the esti-
mated cost of Q(ak−1ak).

3.3 Splitting Query Based on Cost Estimating

If there are k CPUs to evaluate an RPQ, we can split the
RPQ into k subqueries to minimize the evaluation cost by
estimating the evaluation cost of subqueries with USCM, as
shown in Algorithm 1. The proposed algorithm consists of
three main steps: (1) Find all possible sets of k subqueries
(lines 1-3); (2) For each set of k subqueries, estimate the



LETTER
2651

evaluation cost with USCM to find the local maximum of the
evaluation cost (line 4-9); (3) Compare the evaluation cost
of each set of k subqueries and find the set of k subqueries
with the minimum of the evaluation cost (line 10-13).

In Algorithm 1, procedure GetAllSolutions (line 3) re-
turns all of the possible sets of k subqueries. That is, it finds
all of the possible combination of sequenced labels, and this
procedure takes polynomial time. Here, we consider only
the labels as the split labels if it is not at the position of the
labels with Kleene star operator or inside a bracket of an
alternation operator.

3.4 Handling Highly Complex RPQs

Our approach is not only effective with simple RPQs but
also some levels of complexity. To estimate the cost of a
complex RPQ, we need to represent an RPQ into language
equivalent deterministic finite-state automata (DFA), then
find out sub-queries which can be used to estimate the cost.
First, USCM can be used to estimate complex RPQs which
contain modifiers on groups of alternate expressions. For
example, an RPQ, Q(R), with R = a(b|c)∗d can be estimated
by CQ(R) = C0 + C1 + C2, where C0 = δ(a) + ξ(a); C1 =

CQ(bb∗) +CQ(bc∗) +CQ(cc∗) +CQ(cb∗); and C2 = CQ(bd) +CQ(cd).
The right-hand side of C0, C1, and C2 can be estimated by
using our method in Sect. 3.2. Second, in case of evaluat-
ing highly complex RPQs, for instance, nested RPQs which
contain a group expression inside another one, our method
can evaluate the nested RPQs without recursive modifiers
(e.g. Q(R) with R = ((a(b|c)∗d)|e) fg) in optimized cost. In
particular, evaluating a nested RPQ with recursive modifiers
(e.g. Q(R) with R = (a(b|c)∗de)∗ fg) on a large graph will
take very high cost. Therefore, it does not take advantages
of splitting query for evaluating in parallel fashion because
of unbalancing evaluation cost among sub-queries. For such
query, our approach does not split the query, but it is eval-
uated as a single query by using automata-based approach.
It is the same strategy of previous related works on splitting
RPQ [5]. Thus, the optimization for evaluating highly com-
plex RPQs with recursive modifiers is outside the scope of
this paper.

4. Evaluation

To evaluate the effectiveness of our proposed approach
(USCM), we compare the proposed approach to the
automata-based approach (AUT) [4] and the threshold-rare
label based approach (TRL) [5], in the aspect of the average
response time for answering RPQs on large graphs. We also
compare the proposed approach to K-rare label based ap-
proach (KRL), which chooses K-1 rarest labels among the
labels of an RPQ.

In our experiments, we have used the graph and the
queries set given by previous research [5]. The graph is a
network of protein-protein interactions which is used reg-
ularly in systems biology, for instance, to discover of pro-
tein functions and pathways in biological processes [6]. This

Fig. 2 Performance evaluation

graph has 52.050 nodes, 340.775 edges, and 649 labels. We
analyzed 10.000 queries in the queries set and found the fol-
lowing properties. The queries set has around 87% propor-
tion of having simple RPQs, 3% proportion of having nested
RPQs without recursive modifiers, and 10% proportion of
having nested RPQs with recursive modifiers.

Figure 2a illustrated the average response times of four
different approaches. For KRL and USCM, the number of
subqueries, K, is set to 2 for both graphs, and the thresh-
old value sets to 12 for TRL. We observed that approaches
of splitting an RPQ outperform AUT. That is, splitting an
RPQ is necessary to reduce the evaluation cost of an RPQ.
We also observed that USCM reduced the average response
time around 45% and 20% than TRL and KRL respectively.
To observe the difference between KRL and USCM in de-
tail, we compared the average response time of evaluating
RPQs with different the number of subqueries. As shown
in Fig. 2b, we observed that USCM is around two times
faster than KRL for 4 subqueries. Especially, our method
is obtained better performance when the number of split
subqueries is increased, while the performance of KRL is
decreased over the number of split subqueries. This re-
sult proved the effectiveness of estimating evaluation cost
of each spit subquery with USCM.

5. Conclusion

We proposed a novel approach of splitting an RPQ into
subqueries by estimating evaluation cost of each possible
subquery with a unit-subquery cost matrix (USCM). By
minimizing the estimated evaluation cost of separated sub-
queries, our USCM based approach can reduce more re-
sponse time for evaluating RPQs on a large graph than pre-
vious approaches.

Acknowledgments

This research was supported by the MSIP (Ministry of Sci-
ence, ICT and Future Planning), Korea, under the ITRC
(Information Technology Research Center) support program
(IITP-2017-2016-0-00314) supervised by the IITP (Institute
for Information & communications Technology Promotion).
This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2017R1A2B4012559).



2652
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

References

[1] A.O. Mendelzon and P.T. Wood, “Finding regular simple paths
in graph databases,” SIAM Journal on Computing, vol.24, no.6,
pp.1235–1258, 1995.

[2] I. Konstas, V. Stathopoulos, and J.M. Jose, “On social networks and
collaborative recommendation,” Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information
retrieval, pp.195–202, ACM, 2009.

[3] J. Scott, T. Ideker, R.M. Karp, and R. Sharan, “Efficient algorithms for
detecting signaling pathways in protein interaction networks,” Journal
of Computational Biology, vol.13, no.2, pp.133–144, 2006.

[4] R. Goldman and J. Widom, “Dataguides: Enabling query formulation
and optimization in semistructured databases,” Proceedings of 23rd
International Conference on Very Large Data Bases (VLDB’97),
pp.436–445, Aug. 1997.

[5] A. Koschmieder and U. Leser, “Regular path queries on large
graphs,” Scientific and Statistical Database Management, vol.7338,
pp.177–194, Springer, 2012.

[6] J. Zahiri, J.H. Bozorgmehr, and A. Masoudi-Nejad, “Computational
prediction of protein–protein interaction networks: algorithms and re-
sources,” Current genomics, vol.14, no.6, pp.397–414, 2013.

http://dx.doi.org/10.1137/s009753979122370x
http://dx.doi.org/10.1145/1571941.1571977
http://dx.doi.org/10.1089/cmb.2006.13.133
http://dx.doi.org/10.1007/978-3-642-31235-9_12
http://dx.doi.org/10.2174/1389202911314060004

